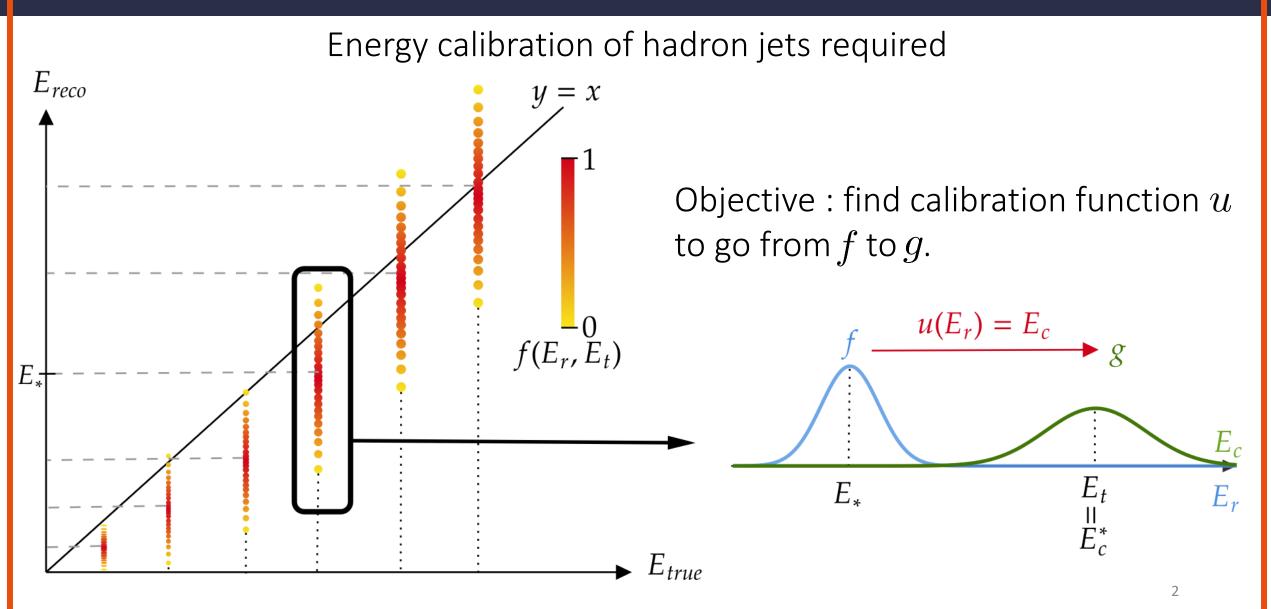
Solving a differential equation to calibrate the ATLAS detector using a neuronal newtork

Matthieu Pélissier, Pierre-Antoine Delsart

I - Context



I - Context

Energy response: links the maximum of the measured and calibrated probability density. E_t^1 E_t^3 \mathbf{F}^3 $R(E_t^2)$ $R(E_{\star}^{3})$ $R(E_t)'$ $\rightarrow E_t$ 3

II – Differential equation on the calibration function

System to solve

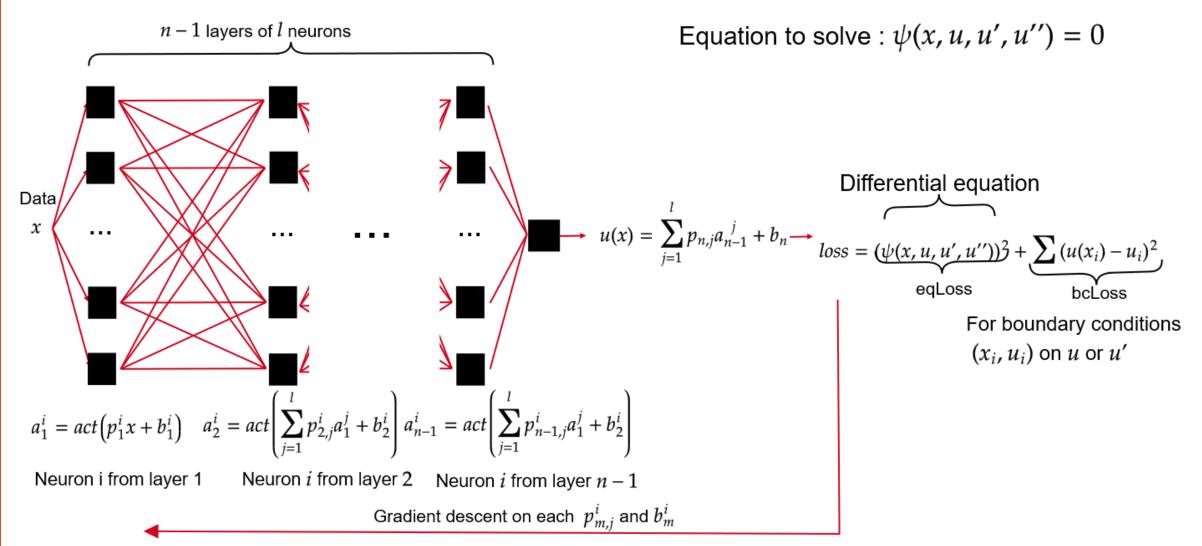
$$\begin{cases} g(E_c, E_t) = f(v(E_c), E_t)v'(E_c) \\ \frac{dg(E_c)}{dE_c}(E_t, E_c = E_t) = 0 \\ \downarrow \\ Gaussian measurement approximation \\ f(E_r, E_t) = C_{norm}e^{-\frac{1}{2\sigma(E_t)^2}(v(E_c) - E_tR(E_t))^2} \\ \downarrow \\ 0 \\ f(E_r, E_t) = C_{norm}e^{-\frac{1}{2\sigma(E_t)^2}(v(E_c) - E_tR(E_t))^2} \\ \downarrow \\ 0 \\ f(E_r, E_t) = C_{norm}e^{-\frac{1}{2\sigma(E_t)^2}(v(E_t) - E_tR(E_t))^2} \\ \downarrow \\ 0 \\ f(E_r, E_t) = C_{norm}e^{-\frac{1}{2\sigma(E_t)^2}(v(E_t) - E_tR(E_t))^2} \\ \downarrow \\ 0 \\ f(E_r, E_t) = C_{norm}e^{-\frac{1}{2\sigma(E_t)^2}(v(E_t) - E_tR(E_t))^2} \\ f(E_r, E_t) = C_{norm}e^{-\frac{1}{2\sigma(E_t)^2}(v(E_t) - E_tR(E_t))} \\ f(E_r, E_t) = C_{norm}e^{-\frac{1}{2\sigma(E_t)^2}(E_t)^2} \\ f(E_r, E_t) = C_{norm}e^{$$

II – Differential equation on the calibration function

Differential equation on the inverse calibration function

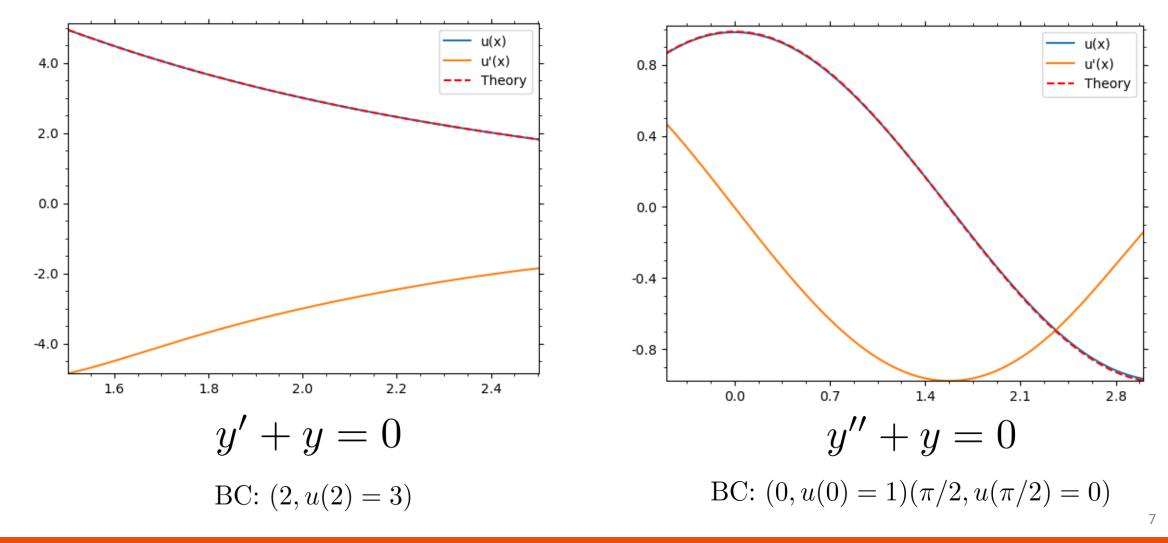
$$v''(E_t)\sigma(E_t)^2 - v'(E_t)^2 (v(E_t) - E_t R(E_t)) = 0$$
Normalisation
Link \mathcal{U} and \mathcal{V}
 $E \to x = \frac{E}{E_{norm}}$
 $u(v(x)) = x$
Differential equation on the calibration function
 $u''(x)\sigma(x)^2 + u'(x)(x - u(x)R(u(x))) = 0$
Main quantities
 E_r
Measured energy
 E_c
Calibrated energy
 E_t
Energy of the maximum
 $of g(E_c, E_t)$
 $R(E_t) = \frac{E_r}{E_t}$
Energy response
 $v(E_c) = E_r$
Inverse calibration
 $u(E_r) = E_c$
Calibration
 $u(E_r) = E_c$
Calibration
 $u(E_r) = E_c$
Calibration function

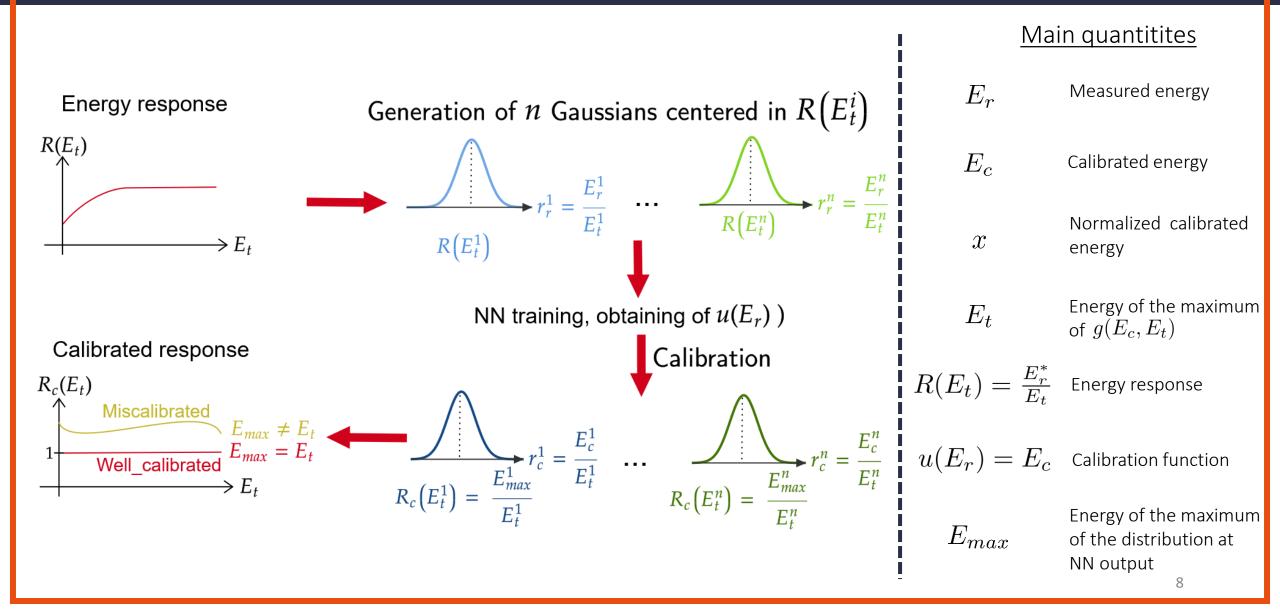
III – ODE resolution using neural network



III – ODE resolution using neural network

Examples of ODE with analytical solutions

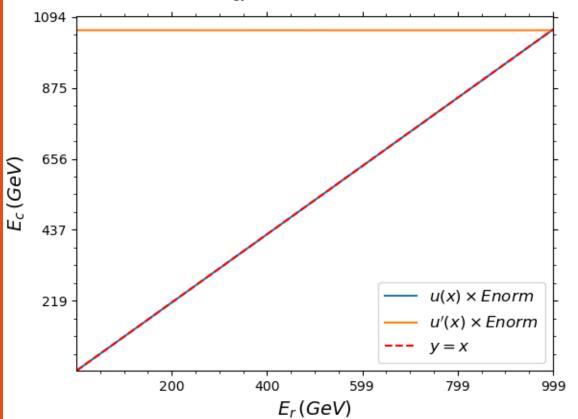


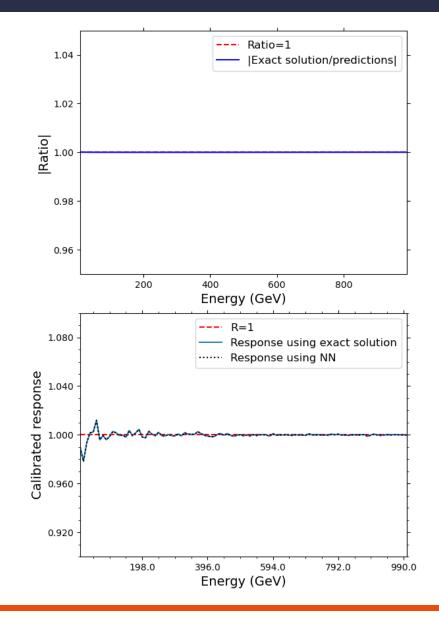


Analytic solution :

$$\longrightarrow R(x) = \alpha + \frac{b}{x}, \quad \sigma(x) = 0.1$$

$$\longrightarrow u(x) = \frac{x-b}{\alpha}$$
 (Analytic solution)



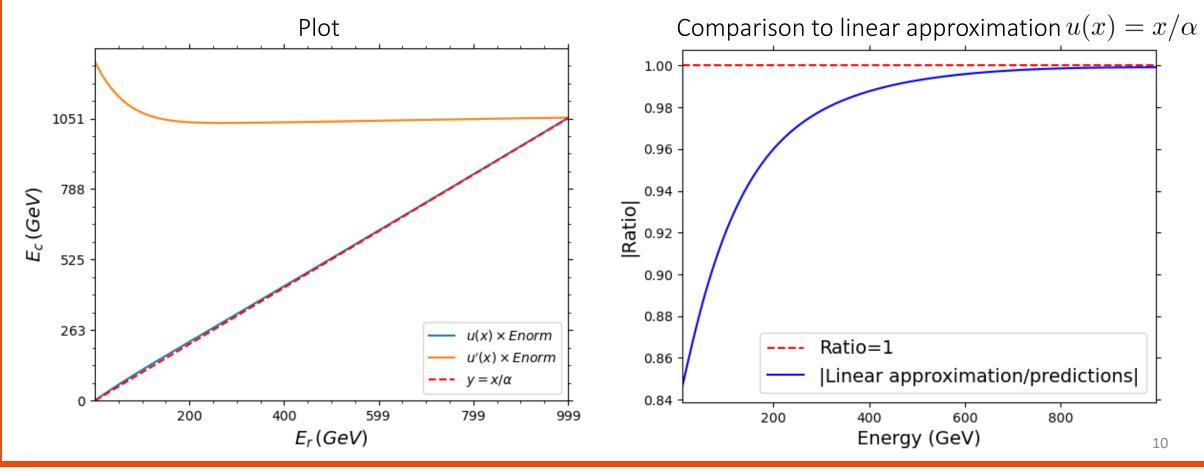


9

IV – Application à la fonction de calibration

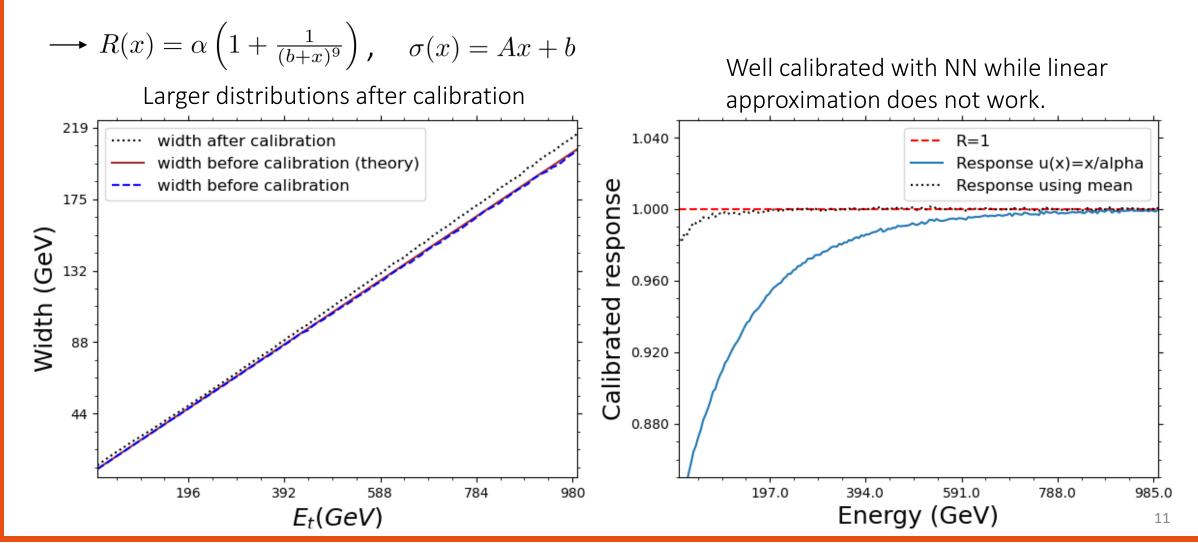
Realistic energy response :

$$\longrightarrow R(x) = \alpha \left(1 + \frac{1}{(b+x)^9} \right)$$
, $\sigma(x) = Ax + b$



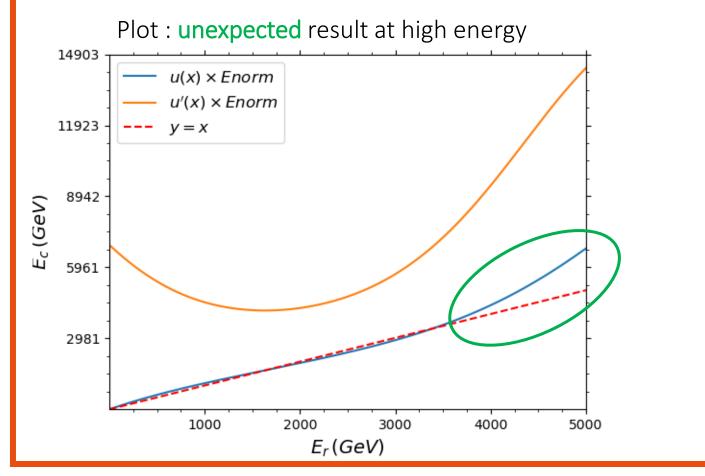
IV – Application à la fonction de calibration

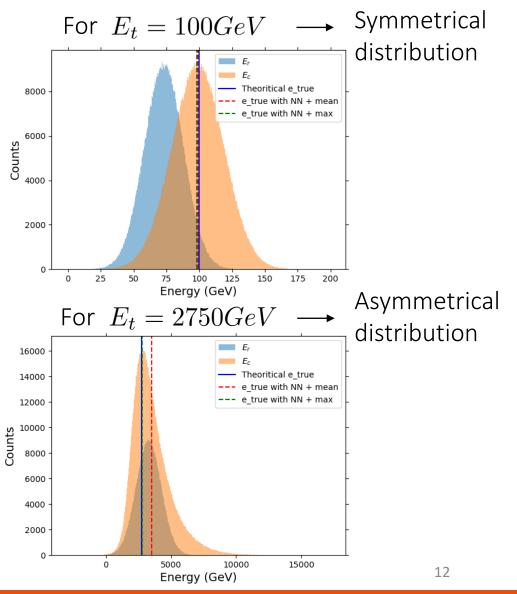
Realistic energy response :



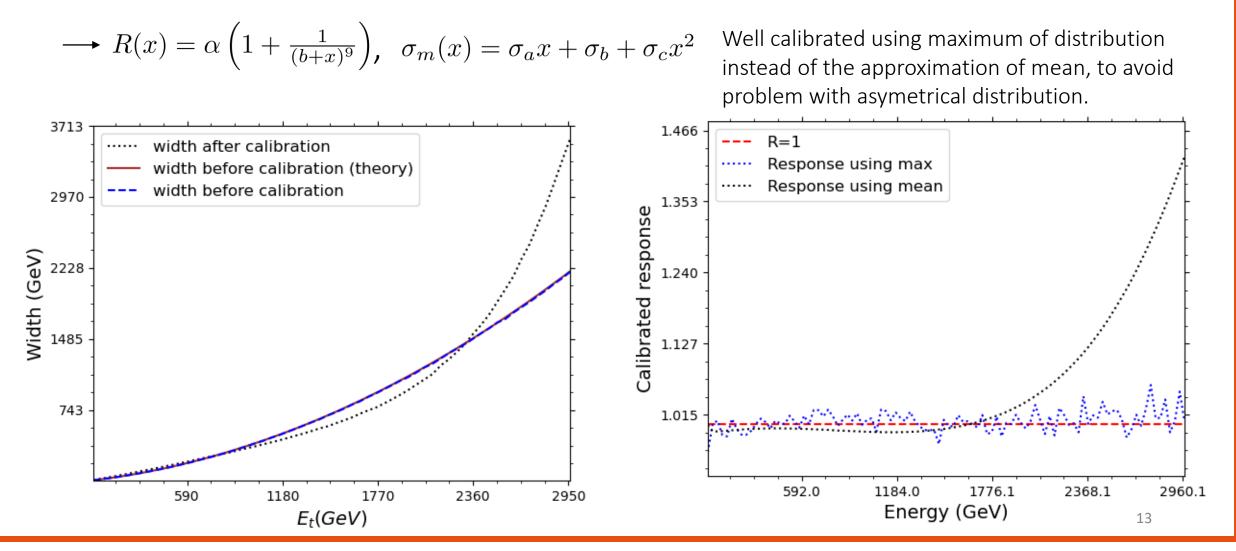
Realistic mass response :

$$\rightarrow R(x) = \alpha \left(1 + \frac{1}{(b+x)^9} \right), \quad \sigma_m(x) = \sigma_a x + \sigma_b + \sigma_c x^2$$





Realistic mass response :



V - Conclusion

Neural network capable of solving **non-linear 2nd-order differential** equations.

Solve the differential equation on the **calibration function** for the response:

- With an analytical solution,
- In energy
- In mass.

Next :

Qualitative **comparison** with current methods.

Integration of the method into the analysis chain using NN.

ANNEXES- Back-up

